设a>0,b>0,c>0,若a+b+c=1,则1/a+1/b+1/c的最小值是
问题描述:
设a>0,b>0,c>0,若a+b+c=1,则1/a+1/b+1/c的最小值是
答
因为a+b+c=1
所以1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(b/a+a/b)+(c/b+b/c)+(a/c+c/a)
≥3+2+2+2=9
此时a=b=c
故1/a+1/b+1/c的最小值是9