∫1/√(e^x-1)dx 求不定积分,求解题思路.

问题描述:

∫1/√(e^x-1)dx 求不定积分,求解题思路.

令√(e^x-1)=t
e^x=t²+1
x=ln(t²+1)
dx=2t/(t²+1)dt
所以
原式=∫1/t*2t/(t²+1)dt
=2∫1/(t²+1)dt
=2arctant+c
=2arctan√(e^x-1)+c