已知sinα=3/5,且α是第四象限角,求tanα[cos(3π-)α-sin(5π+)]α的值

问题描述:

已知sinα=3/5,且α是第四象限角,求tanα[cos(3π-)α-sin(5π+)]α的值
已知sinα=-3/5,且α是第四象限角,求tanα[cos(3π-α)α-sin(5π+α)]的值

tanα*[cos(3π-α)-sin(5π+α)]
=tanα*[cos(2π+π-α)-sin(4π+π+α)]
=tanα*[cos(π-α)-sin(π+α)]
=tanα*[-cosα+sinα]
=sinα(-cosα+sinα)/cosα
=-sinα+(sinα)^2/cosα,
α是第四象限角,cosα=4/5,
原式=3/5+(9/25)/(4/5)
=3/5+9/20
=21/20.