设f(x)在[0,+∞)连续,limf(x)=A (x→+∞),求证lim∫(0到x)f(t)dt=+∞(x→+∞)
问题描述:
设f(x)在[0,+∞)连续,limf(x)=A (x→+∞),求证lim∫(0到x)f(t)dt=+∞(x→+∞)
考研的一道习题,后面答案是这样的,因limf(x)=A>A/2,由极限不等式知,存在N,当x>N时f(x)>A/2,则x>X时有:
∫(0,x)f(t)dt=∫(0,N) f(t)dt+∫(N,x) f(t)dt >=∫(0,N) f(t)dt + (A/2)(x-N),
故lim∫(0,x) f(t)dt = +∞
答
应该A>0,由极限不等式知,存在N,当x>N时f(x)>A/2>0,该不等式积分得:∫(N,x) f(t)dt >=∫(N,x) (A/2)dt =(A/2)(x-N),故:∫(0,x)f(t)dt=∫(0,N) f(t)dt+∫(N,x) f(t)dt >=∫(0,N) f(t)dt + (A/2)(x-N),因为:lim(A/2)...