二面角α-l-β的平面角为120°,在面α内,AB⊥l于B,AB=2在平面β内,CD⊥l于D,CD=3,BD=1,M是棱l上的一个动点,则AM+CM的最小值为_.

问题描述:

二面角α-l-β的平面角为120°,在面α内,AB⊥l于B,AB=2在平面β内,CD⊥l于D,CD=3,BD=1,M是棱l上的一个动点,则AM+CM的最小值为______.

将二面角α-l-β平摊开来,即为图形
当A、M、C在一条直线时AM+CM的最小值,最小值即为对角线AC
而AE=5,EC=1
故AC=

26

故答案为:
26