点P在双曲线(x^2/9)-(y^2/16)=1上运动,则x-(1/2)y的范围是
问题描述:
点P在双曲线(x^2/9)-(y^2/16)=1上运动,则x-(1/2)y的范围是
答
设z=x-y/2y=2x-2z代入x^2/9-y^2/16=1:x^2/9-(4x^2-8xz+4z^2)/16=1x^2/9-(x^2-2xz+z^2)/4=14x^2-9x^2+18xz-9z^2=365x^2-18xz+9z^2+36=0方程有解,则判别式>=0324z^2-4(9z^2+36)>=0324z^2-36z^2-144>=0288z^2>=144z^2>=...