设f(α)=2sin(-α)cos(π+α)-cos(π-α)1+sin2(π+α)+cos(3π2+α)-sin2(π2+α)(1+2sinα≠0),求f(π6)的值.

问题描述:

设f(α)=

2sin(-α)cos(π+α)-cos(π-α)
1+sin2(π+α)+cos(
2
+α)-sin2(
π
2
+α)
(1+2sinα≠0),求f(
π
6
)的值.

f(α)=

2sinαcosα+cosα
1+sin2α+sinα-cos2α
=
2sinαcosα+cosα
2sin2α+sinα
=
cosα(1+2sinα)
sinα(1+2sinα)

∵1+2sinα≠0,
∴f(α)=
cosα
sinα

∴f(
π
6
)=
3
2
1
2
=
3