设f(α)=2sin(-α)cos(π+α)-cos(π-α)1+sin2(π+α)+cos(3π2+α)-sin2(π2+α)(1+2sinα≠0),求f(π6)的值.
问题描述:
设f(α)=
(1+2sinα≠0),求f(2sin(-α)cos(π+α)-cos(π-α) 1+sin2(π+α)+cos(
+α)-sin2(3π 2
+α)π 2
)的值.π 6
答
f(α)=
=2sinαcosα+cosα 1+sin2α+sinα-cos2α
=2sinαcosα+cosα 2sin2α+sinα
,cosα(1+2sinα) sinα(1+2sinα)
∵1+2sinα≠0,
∴f(α)=
,cosα sinα
∴f(
)=π 6
=
3
2
1 2
.
3