设f(0)=0,f'(0)存在,求lim(x→o)f(x)/x.
问题描述:
设f(0)=0,f'(0)存在,求lim(x→o)f(x)/x.
答
因为f(0)=0,f'(0);所以 lim(x→0)f(x)/x=lim(x→0)[f(x)-f(0)]/(x-0)=f'(0)
设f(0)=0,f'(0)存在,求lim(x→o)f(x)/x.
因为f(0)=0,f'(0);所以 lim(x→0)f(x)/x=lim(x→0)[f(x)-f(0)]/(x-0)=f'(0)