ln(1+1)+ln(1+1/2)+ln(1+1/3)+…ln(1+1/n-1)怎么化简
问题描述:
ln(1+1)+ln(1+1/2)+ln(1+1/3)+…ln(1+1/n-1)怎么化简
答
利用对数的运算法则
lgM+lgN=lg(MN)
ln(1+1)+ln(1+1/2)+ln(1+1/3)+…ln(1+1/n-1)
=ln2+ln(3/2)+ln(4/3)+.+ln[n/(n-1)]
=ln[2*(3/2)*(4/3)*.*n/(n-1)]
=ln n
(ps:你这样写,应该有条件n≥1)