若直线l1:mx+2y+1=0,直线l2:x+2my+2=0 若l1垂直l2 求m

问题描述:

若直线l1:mx+2y+1=0,直线l2:x+2my+2=0 若l1垂直l2 求m

L1
mx+2y+1=0
y=-m/2x-1/2
L2
x+2my+2=0
y=-1/(2m)x-1/m
L1与L2垂直,其斜率互为负倒数
-m/2=2m
m=0
L1 y=-1/2
L2 X=-2若l1平行l2 m是L1∥L2其斜率相等 -m/2=-1/(2m)m^2=1m=±1