在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为8,则DE的长为_.

问题描述:

在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为8,则DE的长为______.

把△ADE绕D点旋转到△DCF处,使AD与DC重合,
∴DF=AE,∠DCF=∠A,
∵∠ADC=∠ABC=90°
∴∠A+∠DCB=180°,
∴∠DCF+∠DCB=180°,
∴F、C、B三点共线,
∴S四边形ABCD=S四边形DEBF
∵DE=DF,四个角都为90度,
∴四边形DEBF是正方形,
∴DE2=8,
∴DE=2

2

故答案为:2
2