设f(x)=ax^3+bx,a、b∈R,且f(2)=6,求f(-2)的值

问题描述:

设f(x)=ax^3+bx,a、b∈R,且f(2)=6,求f(-2)的值
动点P沿边长为1的正方形ABCD的边从顶点A出发顺次经过B,C,D再回到A,设x表示点P经过的路程,y表示线段PA的长,求y关于x的函数解析式
定义在R上的函数y=f(x)满足:①f(x)+f(y)=f(x+y),②f(2)=1
f(x)在区间(0,+∞)上是增函数,如果f(x+1)+f(x)≥1,求x的取值范围

设f(x)=ax^3+bx,a、b∈R,且f(2)=6,求f(-2)的值
f(-2)=a(-2)^3-2b=-(a2^3+2b)=-f(2)=-6
动点P沿边长为1的正方形ABCD的边从顶点A出发顺次经过B,C,D再回到A,设x表示点P经过的路程,y表示线段PA的长,求y关于x的函数解析式
y=x 0≤x≤1
y=√[1+(x-1)^2] 1≤x≤2
y=√[1+(x-2)^2] 2≤x≤3
y=4-x 4≤x≤4
定义在R上的函数y=f(x)满足:①f(x)+f(y)=f(x+y),②f(2)=1
f(x)在区间(0,+∞)上是增函数,如果f(x+1)+f(x)≥1,求x的取值范围
f(x)+f(y)=f(x+y)
令x=0,y=0
f(0)=0
再令x=0,y=-x
f(x)+f(-x)=f(0)=0
所以f(x)为奇函数
又因为f(x)在区间(0,+∞)上是增函数
所以f(x)在区间(-∞,+∞)上是增函数
f(x+1)+f(x)=f(2x+1)≥1=f(2)
而f(x)在区间(-∞,+∞)上是增函数
2x+1≥2
x≥1/2