圆锥曲线问题 点P是曲线y=x^2-linx上任意一点,则点P到直线y=x+2的距离的最小值是?

问题描述:

圆锥曲线问题 点P是曲线y=x^2-linx上任意一点,则点P到直线y=x+2的距离的最小值是?

设P(x,x^2-lnx),则d=/x-x^2+lnx-2/2^0.5
令f(x)=x-x^2+lnx-2,则f'(x)=1-2x+1/x,令f'(x)=0,得x=1,x=-1/2(因为x>0,所以舍去),把x=1代入得d=2^0.5