验证 微分方程 积分因子
问题描述:
验证 微分方程 积分因子
我证出来不成立啊
设函数f(u)连续可微,验证1/x^2f(y/x)是微分方程xdy-ydx=0的一个积分因子
答
1/x^2f(y/x) 有歧义!是 (1/x^2)f(y/x) 还是 1/[x^2f(y/x)] 是前面这种微分方程 xdy-ydx=0,即ydx-xdy=0,
设 积分因子 μ=f(y/x)/x^2, 则 [yf(y/x)/x^2]dx+[-f(y/x)/x]dy=0.
P=yf(y/x)/x^2,Q=-f(y/x)/x,
∂P/∂y = f(y/x)/x^2+yf'(y/x)/x^3, ∂Q/∂x= -[-(y/x)f'(y/x)-f(y/x)]/x^2=yf'(y/x)/x^3+f(y/x)/x^2.
则 ∂P/∂y = ∂Q/∂x,μ=f(y/x)/x^2 是积分因子。