四边形ABCD中AB=BC=CD=DA,∠BAD=120°,M为BC上的点,若三角形AMN有一角等于60°,求△AMN为等边三角形.

问题描述:

四边形ABCD中AB=BC=CD=DA,∠BAD=120°,M为BC上的点,若三角形AMN有一角等于60°,求△AMN为等边三角形.
八年级下期的知识.

题目是说N点在BC边上吧. 证明:AB=BC=CD=DA,所以四边形ABCD是菱形. ∠BAD=120°,∠ABC=60°,连接AC,所以△ABC是等边三角形. 因为△AMN内角分情况,∠MAN、∠AMN和∠ANM①∠MAN=60°,∠CAN+∠CMA=60°,∠BAM+∠CMA=6...