1.二次函数的图象过点(3,0)、(2,-3),且对称轴为直线x=1.则解析式为__________
问题描述:
1.二次函数的图象过点(3,0)、(2,-3),且对称轴为直线x=1.则解析式为__________
2.抛物线y=ax^2+bx+c经过点(0,0)、(12,0),最低点的纵坐标为-3,则解析式为_______________
3.抛物线y=ax^2+bx+c与x轴交于点A(-3,0),对称轴为x=-1,顶点到X轴距离为2,)
4.已知抛物线y=ax^2+bx+c的对称轴为直线x=2,且过点(1,4)和(5,0),求抛物线的解析式.
PS:我知道都是一个类型的题,能给我讲讲这种模式吗?三元一次方程,总是解不出来!
大家都知道现在很晚了,能不能麻烦你们算出答案给我好吗?
答
1.二次函数的图象过点(3,0)、(2,-3),且对称轴为直线x=1.则解析式为___y=x^2-2x-3_______
2.抛物线y=ax^2+bx+c经过点(0,0)、(12,0),最低点的纵坐标为-3,则解析式为______y=1/12x^2-x_________
3.抛物线y=ax^2+bx+c与x轴交于点A(-3,0),对称轴为x=-1,顶点到X轴距离为2,)
对称轴x=-b/2a=-1
所以b=2a
将(-3,0)代入
c=-3a
由顶点到x轴距离为2得
-4a=2或-2
所以a=-1/2 b=-1 c=3/2
或a=1/2 b=1 c=-3/2
4.已知抛物线y=ax^2+bx+c的对称轴为直线x=2,且过点(1,4)和(5,0),求抛物线的解析式.
对称轴x=-2b/a=2
a=-b
将(1,4)(5,0)代入
a+b+c=4
25a+5b+c=0
解得a=-1/5 b=1/5 c=4
y=-1/5x^2+1/5x+4