已知三个关于X的一元二次方程:aX²+bX+c=0,bX²+cX+a=0,cX²+aX+b=0,恰有一个公共的实数根,则a²/bc+b²/ca+c²/ab得值为多少?
问题描述:
已知三个关于X的一元二次方程:aX²+bX+c=0,bX²+cX+a=0,cX²+aX+b=0,恰有一个公共的实数根,则a²/bc+b²/ca+c²/ab得值为多少?
答
显然公共根为x=1,于是有:a+b+c=0
∴a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=3abc
∴a^2/bc+b^2/ca+c^2/ab
=(a^3+b^3+c^3)/(abc)
=(3abc)/(abc)
=3