如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/

问题描述:

如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/
的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)填空:
①当t为_________s时,四边形ACFE是菱形;
②当t为_________s时,以A、F、C、E为顶点的四边形是直角梯形.

(1)证明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D为AC的中点,
∴AD=CD,
在△ADE和△CDF中,
∠EAD=∠DCF
∠ADE=∠CDF
AD=CD
,
∴△ADE≌△CDF(AAS);
①由题意得:AE=2t,CF=3t-6.
若四边形ACFE是平行四边形,则有CF=AE,则2t=3t-6,
解得t=6.
所以,当t=6时,四边形ACFE是平行四边形;
②情形一:四边形AFCE为直角梯形时,AF⊥BC或CE⊥AG.
当AF⊥BC时,则BF=3t=3,解得t=1,符合题意;
当CE⊥AG,则AE=2t=3,解得t=1.5,符合题意.
情形二:若四边形ACFE是直角梯形时,此时EF⊥AG.
则BF-AE=3,即3t-2t=3,解得t=3,符合题意;
综上所述,当t=1s、1.5s或3s时,以A、F、C、E为顶点的四边形是直角梯形.