设函数对任意x均满足f(1+x)=af(x),且f'(0)=b,其中a,b为非零常数.为什么在x=1就可导?

问题描述:

设函数对任意x均满足f(1+x)=af(x),且f'(0)=b,其中a,b为非零常数.为什么在x=1就可导?
希望能文字解释下,概念不是很懂啊

lim x->0 (f(1+x)-f(1))/x = lim x->0 a*(f(x)-f(0))/x
而f'(0) =lim x->0 (f(x)-f(0))/x
所以lim x->0 (f(1+x)-f(1))/x存在,且lim x->0 (f(1+x)-f(1))/x = af'(0)=ab
所以f'(1) 存在,且f'(1) = ab
这样可以么?