观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值.
问题描述:
观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值.
答
13+23+…+n3=(1+2+…+n)2,
原式=(1+2+3+…+100)2=(50×101)2=25502500.