1)a、b、C为三角形ABC的内角,所对的边分别为a、b、c、且(a^2+c^2-b^2)/(a^2+b^2-c^2)=C/(2a-c),SinB+sin(C-A)=2Sin2A,求ABC面积?2)已知函数f(X)=a+bsin2X+COS
问题描述:
1)a、b、C为三角形ABC的内角,所对的边分别为a、b、c、且(a^2+c^2-b^2)/(a^2+b^2-c^2)=C/(2a-c),SinB+sin(C-A)=2Sin2A,求ABC面积?2)已知函数f(X)=a+bsin2X+COS2x的图象过点A(0,1)、B(π/4,1),当X属于[0,π/4]时,取得最大值2√2-1.(1)求f(X)解析式,(2)将f(X)按向是a=(M,n) (lMl
答
1)用角的关系做简单
(a^2+c^2-b^2)/(a^2+b^2-c^2)=C/(2a-c)
【2ac(a^2+c^2-b^2)/2ac】/【2ab(a^2+b^2-c^2)/2ab】=sinC/(2sinA-sinC)
ccosB/bcosC=sinC/(2sinA-sinC)
sinCcosB/sinBcosC=sinC/(2sinA-sinC)
cosB(2sinA-sinC)=sinBcosC
2cosBsinA=cosBsinC+sinBcosC=sin(B+C)=sinA
cosB=1/2;
SinB+sin(C-A)=2Sin2A
sin(A+C)+sin(C-A)=2sin2A
2sinCcosA=4sinAcosA
sinC=2sinA
c=2a
(cosA不等于0,若等于,则sinC=2);
由cosB=1/2和c=2a不能确定一个三角形,所以无解!
2)f(0)=a+bsin0+cos0=1
a=0
f(π/4)=a+bsin(π/2)+cos(π/2)=1
a+b=1,b=1
f(x)=sin2x+cos2x=√2sin(2x+π/4)
当X属于[0,π/4]时,x=π/8时,f(x)最大为√2
矛盾!