【急】求数学大神证明(n趋于无穷大)lim n(1/(n^2+a)+1/(n^2+2a)+...+1/(n^2+na))=1用夹逼准则证
问题描述:
【急】求数学大神证明(n趋于无穷大)lim n(1/(n^2+a)+1/(n^2+2a)+...+1/(n^2+na))=1用夹逼准则证
答
a≥0时,有lim n(1/(n^2+a)+1/(n^2+2a)+...+1/(n^2+na))≥lim n(1/(n^2+a)+1/(n^2+a)+...+1/(n^2+a))=lim n(n/(n^2+a))=lim(n^2/(n^2+a))=lim(1/(1+a/n^2))=1 (n->∞)同时有lim n(1/(n^2+a)+1/(n^2+2a)+...+1/(n^2+na...