已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=_.

问题描述:

已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=______.

∵x2+y2+z2-2x+4y-6z+14=0,
∴x2-2x+1+y2+4y+4+z2-6z+9=0,
∴(x-1)2+(y+2)2+(z-3)2=0,
∴x-1=0,y+2=0,z-3=0,
∴x=1,y=-2,z=3,
故x+y+z=1-2+3=2.
故答案为:2.