在三角形ABC中sinA^2+sinB^2-sinC^2除以sinA^2-sinB^2+sinC^2=1+cos2C除以1+cos2B,判断三角形形状
问题描述:
在三角形ABC中sinA^2+sinB^2-sinC^2除以sinA^2-sinB^2+sinC^2=1+cos2C除以1+cos2B,判断三角形形状
答
在三角形ABC中sinA^2+sinB^2-sinC^2除以sinA^2-sinB^2+sinC^2=1+cos2C除以1+cos2B,判断三角形形状