若m为正整数,且m不能被4整除,试说明1^m+2^m+3^m+4^m+…+9^m一定是5的倍数
问题描述:
若m为正整数,且m不能被4整除,试说明1^m+2^m+3^m+4^m+…+9^m一定是5的倍数
答
m是奇数时,首尾对称,两两组合,显然成立。
m是偶数时,除以5的余数同1-1+1-1+0+1-1+1-1=0, 成立
答
1^m+2^m+3^m+4^m+…+9^m | 5
= (1^m+2^m+3^m+4^m)*2+0^m | 5
= 2 + (2^m+3^m+4^m)*2 | 5
当M被4除余1时
2 + (2^m+3^m+4^m)*2 | 5
= 2+(2+3+4)*2 |5
= 20 |5
= 0
当M被4除余2时
2 + (2^m+3^m+4^m)*2 | 5
= 2+(4+9+16)*2 |5
= 60 |5
= 0
当M被4除余3时
2 + (2^m+3^m+4^m)*2 | 5
= 2+(8+27+64)*2 |5
= 200 |5
= 0
综上得证.