如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F. (1)求证:CE=CF; (2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.
问题描述:
如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.
(1)求证:CE=CF;
(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.
答
(1)证明:∵CD垂直平分线AB,
∴AC=CB.
∴△ABC是等腰三角形,
∵CD⊥AB,
∴∠ACD=∠BCD.
∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°
∴∠EDC=∠FDC,
在△DEC与△DFC中,
,
∠ACD=∠BCD CD=CD ∠EDC=∠FDC
∴△DEC≌△DFC(ASA),
∴CE=CF.
(2)当CD=
AB时,四边形CEDF为正方形.理由如下:1 2
∵CD⊥AB,
∴∠CDB=∠CDA=90°,
∵CD=
AB,1 2
∴CD=BD=AD,
∴∠B=∠DCB=∠ACD=45°,
∴∠ACB=90°,
∴四边形ECFD是矩形,
∵CE=CF,
∴四边形ECFD是正方形.