(x+1)(x+2)/1+(x+2)(x+3)/1约分谢谢
问题描述:
(x+1)(x+2)/1+(x+2)(x+3)/1约分谢谢
答
(x+1)(x+2)/1+(x+2)(x+3)/1
应该是:1/[(x+1)(x+2)]+1/[(x+2)(x+3)]
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)
=1/(x+1)-1/(x+3)
=2/[(x+1)(x+3)]
1是分子,(X+1)(X+2)是分母.