求方程7(x+y)=3(x2-xy+y2)的整数解.

问题描述:

求方程7(x+y)=3(x2-xy+y2)的整数解.

设x+y=3t,x2-xy+y2=7t(其中t为整数),∴3xy=(x+y)2-(x2-xy+y2)=9t2-7t,∴7(x+y)=3(x2-xy+y2)≥3(x2-2xy+y2)=3(x-y)2≥0,⇒x+y≥0,∴t≥0,∵(x-y)2=x2-xy+y2-xy=-28t−9t23,∴t是3的倍数,于是...