设f(n)=1/n+1+1/n+2+…+1/2n(n∈N),则f(n+1)-f(n)= _ .
问题描述:
设f(n)=
+1 n+1
+…+1 n+2
(n∈N),则f(n+1)-f(n)= ___ .1 2n
答
∵f(n)=
+1 n+1
+…+1 n+2
(n∈N),1 2n
∴f(n+1)=
+1 n+2
+…+1 n+3
+1 2n
+1 2n+1
,1 2n+2
∴f(n+1)-f(n)=(
+1 n+2
+…+1 n+3
+1 2n
+1 2n+1
)-(1 2n+2
+1 n+1
+…+1 n+2
)1 2n
=
+1 2n+1
-1 2n+2
1 n+1
=
-1 2n+1
.1 2n+2
故答案为:
-1 2n+1
.1 2n+2