设f(n)=1/n+1+1/n+2+…+1/2n(n∈N),则f(n+1)-f(n)= _ .

问题描述:

设f(n)=

1
n+1
+
1
n+2
+…+
1
2n
(n∈N),则f(n+1)-f(n)= ___ .

∵f(n)=

1
n+1
+
1
n+2
+…+
1
2n
(n∈N),
∴f(n+1)=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2

∴f(n+1)-f(n)=(
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2
)-(
1
n+1
+
1
n+2
+…+
1
2n

=
1
2n+1
+
1
2n+2
-
1
n+1

=
1
2n+1
-
1
2n+2

故答案为:
1
2n+1
-
1
2n+2