如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.

问题描述:

如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.

(1)
∵ ∠ADE=∠CB′E=90° ,∠AED=∠CEB′ ,AD=BC=CB′ ,
∴ Rt△CEB′ ≌ Rt△AED .
(2)
∵ AB=8,DE=3,
∴ CE=8-3=5 ,
∵ Rt△CEB′ ≌ Rt△AED
∴ AE=CE=5 ,
∵ Rt△AED 中 ,AE=5 ,DE=3 ,
∴ AD=4 ;
延长HP交AB于M ,
∵ 矩形ABCD ,
∴ PM⊥AB ,MH=AD=4 ,
∵ ∠AGP=∠AMP=90° ,∠PAG=∠PAM ,AP=AP ,
∴ Rt△AGP ≌ Rt△AMP ,
∴PG=PM .
∴PG+PH=PM+PH=MH=AD=4 .