设a1,a2,...,an都是正数,证明不等式(a1+a2+...+an)[1/(a1)+1/(a2)+...+1/(an)]>=n^2
问题描述:
设a1,a2,...,an都是正数,证明不等式(a1+a2+...+an)[1/(a1)+1/(a2)+...+1/(an)]>=n^2
答
用数学归纳法证明(a1+a2+...+an)*(1/a1+1/a2+...1/an)>=n^2 证明:当n=1时,a1*(1/a1)=1>=1^2 成立.假设当n=k时,命题成立.即:(a1+a2+...+ak)*(1/a1+1/a2+...1/ak)>=k^2 则 n=k+1时,(a1+a2+...+ak+a)*(1/a1+1/a2+...1/a...