设随机变量X,Y相互独立,且E(X)=E(Y)=1,D(X)=D(Y)=1,试求E[(X+Y)^2].

问题描述:

设随机变量X,Y相互独立,且E(X)=E(Y)=1,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[ (X+Y)^2 ] = E[ (X-1 + Y -1 +2)^2 ] = E(X-1)^2 + E(Y-1)^2 + 4 +2*E(X-1)(Y-1) + 2*2*E(X-1) + 2*2*E(Y-1) = D(X) + D(Y) + 4 + 0 + 0 + 0 = 6