关于向量积的问题

问题描述:

关于向量积的问题
三角形的三个顶点 P(1,3,2),Q(2,-1,1),R ( -1,2,3)
求三角形面积?..答案是根号107 除2
可以用这个公式吗?
a x b = (a2b3-a3b3)i+(a3b1-a1b3)j+(a1b2-a2b1)k

PQ=根号【(1-2)^2+(3+1)^2+(2-1)】=根号18
QR=根号【(2+1)^2+(-1-2)^2+(1-3)^2】=根号22
PR=根号【(1+1)^2+(3-2)^2+(2-3)^2】=根号6
余弦定理:cos角Q=(PQ^2+QR^2-PR^2)/2*PQ*QR
sinQ=根号(1-cos角Q^2)=(根号428)/2*【根号(18*22)】
S=0.5*PQ*QRsinQ=根号107 除2