求1999*1999-1998*2002 和 (1+1/2)(1+1/4)(1+1/16)(1+1/256)用完全平方公式和平方差公式计算谢谢谢谢

问题描述:

求1999*1999-1998*2002 和 (1+1/2)(1+1/4)(1+1/16)(1+1/256)用完全平方公式和平方差公式计算
谢谢谢谢

1999*1999-1998*2002
=1999^2-(2000^2-2^2)
=1999^2-2000^2+4
=(1999+2000)(1999-2000)+4
=3999+4
=4003
(1+1/2)(1+1/4)(1+1/16)(1+1/256)
=3/2*5/4*7/6*257/256
=3*5*7*257/(2*4*6*256)
=105*(256+1)/(48*256)
=35/16+35/(16*256)
=35/16*(1+1/256)
=35/16*257/256
=8995/4096 .

(1+1/2)(1+1/4)(1+1/16)(1+1/256)分子分母同乘以(1-1/2)
原式=(1+1/2)(1-1/2)(1+1/4)(1+1/16)(1+1/256)/(1-1/2)
=(1-1/4)(1+1/4)(1+1/16)(1+1/256)/(1-1/2)
=(1-1/16)(1+1/16)(1+1/256)/(1-1/2)
=(1-1/256)(1+1/256)/(1-1/2)
=(1-1/65536)/(1-1/2)
=65535/65536×2
=65535/32768
1999*1999-1998*2002
=(2000-1)²-(2000-2)(2000+2)
=2000²-4000+1-2000²+4
=-4000+5
=-3995

1999*1999-1998*2002
=(2000-1)²-(2000-2)(2000+2)
=2000²-2x2000+1-2000²+2²
=-4000+1+4
=-3995
(1+1/2)(1+1/4)(1+1/16)(1+1/256)
=(1-1/2)(1+1/2)(1+1/4)(1+1/16)(1+1/256)
=(1-1/4)(1+1/4)(1+1/16)(1+1/256)
=(1-1/16)(1+1/16)(1+1/256)
=(1-1/256)(1+1/256)
=1-1/65536
=65535/65536