设cosα=-√5/5 π

问题描述:

设cosα=-√5/5 π

cosα=-√5/5
π<α<3π/2
∴sinα=-2√5/5
tanα=2
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
=[2-(1/3)]/[1+2*(1/3)]
=(5/3)/(5/3)
=1
0