已知:如图,三角形ABC中,B+C=2A,BE垂直于AC于E,CF垂直于AB于F,D为BC中点,判断三角形DEF的形状,且证明结论

问题描述:

已知:如图,三角形ABC中,B+C=2A,BE垂直于AC于E,CF垂直于AB于F,D为BC中点,判断三角形DEF的形状,且证明结论

在直角△BCE与直角△BCF中,D为BC中点则ED=BD=DC=DF得△DEF为等边三角形还可得∠EDB=2∠DCE,∠BDF=2∠DCF因为∠EDF=∠EDB+∠BDF=2(∠DCE+∠DCF)=2∠ECF又因为∠B+∠C=2∠A所以∠A=60度在直角△ACF中,∠ACF=∠ECF=30度...稍微改一下:在直角△BCE与直角△BCF中,D为BC中点则ED=BD=DC=DF得△DEF为等腰三角形还可得∠EDB=2∠DCE,∠BDF=2∠DCF因为∠EDF=∠EDB-∠BDF=2(∠DCE-∠DCF)=2∠ECF又因为∠B+∠C=2∠A所以∠A=60度在直角△ACF中,∠ACF=∠ECF=30度可得∠EDF=2∠ECF=60度综上 △DEF 为等边三角形