已知数列{An}的前n项和为Sn,A2n=n+1(n∈N*),S2n-1=4n^2-2n+1(n∈N*),求数列{An}的通项An及前几项和Sn

问题描述:

已知数列{An}的前n项和为Sn,A2n=n+1(n∈N*),S2n-1=4n^2-2n+1(n∈N*),求数列{An}的通项An及前几项和Sn

换元法:令m=2n-1则n=(m+1)/2带入S(2n-1)=4n^2-2n+1可得:S(m)=4*[(m+1)/2]^2-2*[(m+1)/2]+1=m^2+m+1所以S(n)=n^2+n+1A1=S(1)=1+1+1=3S(2)=4+2+1=7 A2=7-3=4S(3)=9+3+1=13 A3=13-7=6An=Sn-Sn-1=n^2+n+1-((n-1)^2+n-1+...