1/(1×3×5)+1/(3×5×7)+1/(5×7×9)+1/(7×9×11)+...+1/(2001×2003×2005)=?

问题描述:

1/(1×3×5)+1/(3×5×7)+1/(5×7×9)+1/(7×9×11)+...+1/(2001×2003×2005)=?

1/(1×3×5)+1/(3×5×7)+1/(5×7×9)+1/(7×9×11)+...+1/(2001×2003×2005)
=1/4*(1/1*3-1/3*5)+1/4(1/3*5-1/5*7)+...+1/4(1/2001*2003-1/2003*2005)
=1/4(1/1*3-1/3*5+1/3*5-1/5*7+...+1/2001*2003-1/2003*2005)
=1/4(1/1*3-1/2003*2005)
=1/12-1/(2003*8020)