求不定积分∫cosx/x^2dx

问题描述:

求不定积分∫cosx/x^2dx

∫ (cosx)/x² dx
= ∫ cosx d(- 1/x)
= - (cosx)/x + ∫ 1/x d(cosx)
= - (cosx)/x - ∫ (sinx)/x dx
= - (cosx)/x - Si(x) + C
Si(x)是正弦积分,无法用初等函数表示的.
或者用级数表示也行.
∫ (sinx)/x dx
= ∫ 1/x · ∑(k=0→∞) (- 1)^k x^(1 + 2k)/(1 + 2k)! dx
= ∑(k=0→∞) (- 1)^k/(1 + 2k)! · ∫ x^(2k) dx
= ∑(k=0→∞) (- 1)^k/(1 + 2k)! · x^(2k + 1)/(2k + 1) + C
= ∑(k=0→∞) [(- 1)^k x^(2k + 1)]/[(1 + 2k)!(1 + 2k)] + C
∴∫ (cosx)/x² dx
= - (cosx)/x - ∑(k=0→∞) [(- 1)^k x^(2k + 1)]/[(1 + 2k)!(1 + 2k)] + C,若你能化简这个级数就行.