已知x+y=1,x^3+3x^2+3x+3y-3y^2+y^3=37,则(x+1)+(y-1)^4=( )

问题描述:

已知x+y=1,x^3+3x^2+3x+3y-3y^2+y^3=37,则(x+1)+(y-1)^4=( )
我算出了-3(x+1)(y-1)=37之后就不会算了,

x^3 + y^3 = (x + y) (x^2 - xy + y^2)= x^2 - xy + y^2= (x + y)^2 - 3xy= 1 - 3xyx^2 - y^2 = (x + y) (x - y) = x - y所以:x^3 + 3x^2 + 3x + 3y - 3y^2 + y^3= (x^3 + y^3) + 3(x^2 - y^2) + 3(x + y)= 1 - 3xy...