已知函数f(x)=Acos(2ωx+2φ)+2.

问题描述:

已知函数f(x)=Acos(2ωx+2φ)+2.
已知函数f(x)=Acos(2ωx+2φ)+2(A>0,ω>0,0<φ<π/2)的最大值为3,f(x)的图像的相邻两对称轴间的距离为2,在y轴上的截距为2.
(1)求函数f(x)的解析式.
(2)若m=log^4(√2),求f(m)+f(m+1)的值

因为f(x)最大值=3,所以A=1
f(0)=cos(2φ)+2=2,所以φ=π/4
相邻对称轴的间距是周期的一半,所以π/ω=4,ω=π/4;
所以,f(x)=cos(xπ/2+π/2)+2;
因为m=log^4(√2)=log^4(4)^1/4=1/4,
所以 f(m)+f(m+1)=cos(π/8+π/2)+2+cos(5π/8+π/2)+2
=-sin(π/8)-sin(5π/8)+4
=-sin(3π/8-π/4)-sin(3π/8+π/4)+4
=-2sin(3π/8)cos(π/4)+4=4-√(1+√2)/2