设AB是过抛物线y^=2px焦点F的弦,AB为直径的圆为何与抛物线准线相切
问题描述:
设AB是过抛物线y^=2px焦点F的弦,AB为直径的圆为何与抛物线准线相切
答
此时直径为x1+x2+P,则半径为(x1+x2+P)/2,而圆心到准线的距离恰好是(x1+x2)/2+p/2=(x1+x2+P)/2
答
取AB中点M
只要证明M到准线的距离等于MA=MB就可以了
作MN⊥准线 AP⊥准线 BQ⊥准线于N,P,Q
根据中位线定理有MN=1/2(AP+BQ)①
而MA=MB=1/2AB=1/2(FA+FB)
根据抛物线的定义,抛物线上的点到准线距离等于到焦点距离
那么FA=AP FB=BQ
所以MA=MB=1/2(FA+FB)=1/2(AP+BQ)②
比较①② 得到MA=MB=MN
于是以M为圆心,AB为半径的圆必和准线相切