把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有相同标号的盒子中,则不同的方法有( ) A.36种 B.45种 C.54种 D.84种
问题描述:
把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有相同标号的盒子中,则不同的方法有( )
A. 36种
B. 45种
C. 54种
D. 84种
答
第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有2×3=6种选择;如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有2×3=6种选择,得到第5球独占一盒的选择有4×(6+6)=48种,
第二类,第5球不独占一盒,先放1-4号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9×4=36,
根据分类计数原理得,不同的方法有36+48=84种.
故选:D.