已知非负实数x,yz满足x-1/2=2-y/3=z-3/4,记W=3x+4y+5z.求Wde最大值和最小值
问题描述:
已知非负实数x,yz满足x-1/2=2-y/3=z-3/4,记W=3x+4y+5z.求Wde最大值和最小值
答
x=z-1/4------1
y=33/4-3z-----2
W=3z-3/4+33-12z+5z=32(1/4)-4z,
xyz非负,由1式z>1/4;2式z最大31又1/4,125/4;最小21又1/4 ,85/4
答
设x-1/2=2-y/3=z-3/4=k
x=k+1/2
y=6-3k
z=k+3/4
W=3(k+1/2)+4(6-3k)+5(k+3/4)
=-4k+117/4
当k=0时,W最大为117/4
当y=0时,k=2,W最大为85/4
答
设x-1/2=2-y/3=z-3/4=k
x=k+1/2
y=6-3k
z=k+3/4
W=3(k+1/2)+4(6-3k)+5(k+3/4)
=-4k+117/4
当k=0时,W最大为117/4
当y=0时,k=2,W最大为85/4