您的位置: 首页 > 作业答案 > 其他 > 求使函数y=x^2+ax-2/x^2-x+1的值域为(-∝,2)的a的取值范围 求使函数y=x^2+ax-2/x^2-x+1的值域为(-∝,2)的a的取值范围 分类: 作业答案 • 2022-03-03 20:52:11 问题描述: 求使函数y=x^2+ax-2/x^2-x+1的值域为(-∝,2)的a的取值范围 答 -2 答 y=(x^2+ax-2)/(x^2-x+1) =[(x^2-x+1)+(a+1)x-3]/(x^2-x+1) =1+[(a+1)x-3]/(x^2-x+1) 值域为(-∝,2),则 1+[(a+1)x-3]/(x^2-x+1)[(a+1)x-3]/(x^2-x+1)∵根据判别式判定,x^2-x+1>0; 则(a+1)x-3x^2-(a+2)x+4>0. x∈R,则根据判别式来判定,(a+2)^2-4×4=a^2+4a-12∴-4 答 因为分母=x^2-x+1=(x-1/2)^2+3/4.故可知,函数定义域是R,且分母恒为正.又由题设值域知,对任意实数x,恒有f(x)-2-[x^2-(a+2)x+4]/[x^2-x+1][x^2-(a+2)x+4]/[x^2-x+1]>0===>由分母恒大于0,得:对任意实数x,恒有x^2-(a+2)x+4>0===>(a+2)^2-16-6