(tanx/2)-(1/sinx)的最小正周期=?
问题描述:
(tanx/2)-(1/sinx)的最小正周期=?
答
(tanx/2)-(1/sinx)
=(sinx/2)÷(cosx/2)-[1/(2·sinx/2·cosx/2)]
=(2sin²x/2-1)÷(2·sinx/2·cosx/2)
=-cosx÷sinx
=-cotx
所以最小正周期为π