设p:f(x)=e^x+Inx+2x^2+mx+1
问题描述:
设p:f(x)=e^x+Inx+2x^2+mx+1
在(0,正无穷)内单调递增,
q:m大于等于5时,则p是q的什么条件
答
解;
f(x)=e^x+lnx+2x²+mx+1在0到正无穷内单调递增,则导数
f'(x)=e^x+(1/x)+4x+m>0在(0,+∞)上恒成立
设f'(x)的最小值是A,显然
A>e^0+(1/(1/2))+4*(1/2)+m=5+m
虽然A>0,
但并不能确定5+m一定大于或等于0
比如,
3>0,若3>x,你能确定x是大于或等于0吗?
所以由p推不出q
若m>=-5,则有m+5>=0
则A>m+5>=0,f'(x)恒大于0,所以f(x)在0到正无穷单调递增.由q可推出p.
综合知,
p推不出q,q能推出p
p是q的必要非充分条件