在等比数列{an}中,若a1=128,a8=1(1)求公比q和a12;(2)证明:依次取出数列{an}中的第1项,第4项,第7项……第3n-2项……所得的新项数{a3n-2}(n∈N*)仍然是一个等比数列.

问题描述:

在等比数列{an}中,若a1=128,a8=1
(1)求公比q和a12;(2)证明:依次取出数列{an}中的第1项,第4项,第7项……第3n-2项……所得的新项数{a3n-2}(n∈N*)仍然是一个等比数列.

a8=a1q^7
q^7=1/128
q=1/2
所以a12=a1*q^11=1/8
bn=a(3n-2)
则b(n+1)=a(3n+1)
所以b(n+1)/bn
=a1*q^(3n)/[a1*q^(3n-3)]
=q^3
所以bn=a(3n-2)仍然是一个等比数列.