设x∈[0,π3],求函数y=cos(2x-π3)+2sin(x-π6)的最值.
问题描述:
设x∈[0,
],求函数y=cos(2x-π 3
)+2sin(x-π 3
)的最值. π 6
答
y=cos(2x-
)+2sin(x-π 3
)=-2[sin(x-π 6
)-π 6
]2+1 2
,3 2
∵x∈[0,
],-π 3
≤sin(x-1 2
)≤π 6
1 2
∴当sin(x-
)=π 6
,ymax=1 2
,3 2
当sin(x-
)=-π 6
,ymin=-1 2
.1 2