设f(x)在[0.1]连续,证明∫(0→1)[f(x)^2]dx≥[∫(0→1)f(x)dx]^2

问题描述:

设f(x)在[0.1]连续,证明∫(0→1)[f(x)^2]dx≥[∫(0→1)f(x)dx]^2

本题证明有一定的技巧,下面给出两种证法,其中第二种证法需用到二重积分,如没学过二重积分,只看第一种证法即可.